I have seen the future of foodborne pathogen monitoring technology!  According to a new article published by the US Department of Agriculture’s Quality and Safety Assessment Research Unit, Salmonella detection (with other possible pathogens to follow) may be possible at a level not previously seen in food pathogen testing systems.

By using nanotechnology,  microscopic biological sensors can detect Salmonella bacteria in laboratory testing.  The sensors could be adapted to detect other foodborne pathogens as well.

The sensor is part of an evolving science known as nanotechnology—the study and manipulation of materials on a molecular or even atomic level, measured in billionths of a meter, which is about 10 to100 times thinner than a human hair.

There are examples of biosensors in nature. Insects detect tiny amounts of sex pheromones in the environment and use them as a beacon to find mates. And fish use natural biosensors to detect barely perceptible vibrations in the surrounding water.

ARS engineer Bosoon Park at the Quality and Safety Assessment Research Unit in Athens, Ga., and cooperators at the University of Georgia used nanotechnology to develop the biosensor. The detection method may have great potential for food safety and security, according to Park.

The biosensors that Park and his university colleagues developed include fluorescent organic dye particles attached to Salmonella antibodies. The antibodies hook onto Salmonella bacteria and the dye lights up like a beacon, making the bacteria easier to see.

People who eat Salmonella-infected food products can get salmonellosis, a disease characterized by nausea, vomiting, severe diarrhea, and sometimes death.

For his research, Park recently received the prestigious first place Innovation Nano Research Award at the Sixth International Nanotech Symposium and Exhibition, in Ilsan, Korea.

Perhaps this technology can help reduce the alarming number of people who fall ill from Salmonella outbreaks each year .