Header graphic for print
Food Poison Journal Food Poisoning Outbreaks and Litigation: Surveillance and Analysis

Food Poisoning Information

Subscribe to the Food Poisoning Information Section RSS Feed

Listeria Hits 15 in 8 States – 7 Sick in Canada

big-map-1-27-2016-300x193Since September 2015, CDC has been collaborating with public health officials in several states, the U.S. Food and Drug Administration (FDA), and the Public Health Agency of Canada to investigate a multistate outbreak of Listeria monocytogenes infections (listeriosis).

Fifteen people infected with the outbreak strain of Listeria have been reported from eight states since July 5, 2015, an increase of three cases since the last update on January 22. All 15 people were hospitalized, including one person from Michigan who died as a result of listeriosis. One illness was reported in a pregnant woman. The number of ill people reported from each state is as follows: Connecticut (1), Indiana (1), Massachusetts (1), Michigan (4), Missouri (1), New Jersey (1), New York (5), and Pennsylvania (1). Whole genome sequencing has been performed on clinical isolates from all ill people and has shown that the isolates are highly related genetically.

According to the Public Health Agency of Canada, there are seven people in five Canadian provinces infected with the same outbreak strain of Listeria. Laboratory tests performed on clinical isolates from ill people in Canada showed that the isolates are highly related genetically to Listeria isolates from ill people in the United States.

Epidemiologic and laboratory evidence indicate that packaged salads produced at the Dole processing facility in Springfield, Ohio and sold under various brand names are the likely source of this outbreak.

Six Foods Bill Marler Never Eats

Bill Marler B-W headshotUnpasteurized (“raw”) milk and packaged juices. Unpasteurized milk, sometimes called “raw” milk, can be contaminated with bacteria, viruses and parasites. Between 1998 and 2011, there were 148 food poisoning outbreaks linked to raw milk and raw milk products in the US—and keep in mind that comparatively few people in the country ever consume these products, so 148 outbreaks is nothing to ignore. As for unpasteurized packaged juices, one of Marler’s earliest cases was the 1996 E. coli outbreak from unpasteurized Odwalla apple juice. As a result, he won’t go near raw milk or juice. There’s no benefit big enough to take away the risk of drinking products that can be made safe by pasteurization,” he says.

Raw sprouts. Uncooked and lightly cooked sprouts have been linked to more than 30 bacterial outbreaks (mostly of salmonella and E. coli) in the US since mid-1990s. As recently as 2014, salmonella from bean sprouts sent 19 people to the hospital. All types of sprouts—including alfalfa, mung bean, clover and radish sprouts—can spread infection, which is caused by bacterial contamination of their seeds. “There have been too many outbreaks to not pay attention to the risk of sprout contamination,” Marler says. “Those are products that I just don’t eat at all.” He did add that he does eat them if they’re cooked.

Meat that isn’t well-done. Marler orders his burgers well-done. “The reason ground products are more problematic and need to be cooked more thoroughly is that any bacteria that’s on the surface of the meat can be ground inside of it,” Marler says. “If it’s not cooked thoroughly to 160°F throughout, it can cause poisoning by E. coli and salmonella and other bacterial illnesses.” As for steaks, needle tenderizing—a common restaurant practice in which the steak is pierced with needles or sliced with knives to break down the muscle fibers and make it more tender—can also transfer bugs from the surface to the interior of the meat. If a restaurant does this (Marler asks), he orders his steak well-done. If the restaurant doesn’t, he’ll opt for medium-well.

Prewashed or precut fruits and vegetables. “I avoid these like the plague,” Marler says. Why? The more a food is handled and processed, the more likely it is to become tainted. “We’ve gotten so used to the convenience of mass-produced food—bagged salad and boxed salads and precut this and precut that,” Marler says. “Convenience is great but sometimes I think it isn’t worth the risk.” He buys unwashed, uncut produce in small amounts and eats it within three to four days to reduce the risk for listeria, a deadly bug that grows at refrigerator temps.

Raw or undercooked eggs. You may remember the salmonella epidemic of the 1980s and early ’90s that was linked mainly to eggs. If you swore off raw eggs back then, you might as well stick with it. The most recent salmonella outbreak from eggs, in 2010, caused roughly 2,000 reported cases of illness. “I think the risk of egg contamination is much lower today than it was 20 years ago for salmonella, but I still eat my eggs well-cooked,” Marler says.

Raw oysters and other raw shellfish. Marler says that raw shellfish—especially oysters—have been causing more foodborne illness lately. He links this to warming waters, which produce more microbial growth. “Oysters are filter feeders, so they pick up everything that’s in the water,” he explains. “If there’s bacteria in the water it’ll get into their system, and if you eat it you could have trouble. I’ve seen a lot more of that over the last five years than I saw in the last 20 years. It’s simply not worth the risk.”

First published at http://bottomlinehealth.com/health-insider/6-things-this-food-safety-expert-wont-eatand-one-surprising-food-he-will/ Copyright © 2016 by Boardroom Inc., 281 Tresser Blvd., Stamford, Connecticut 06901-3229. www.BottomLineHealth.com

2015 – Profile in Obsession: Bill Marler, By Naomi Tomky March 24, 2015

2015 – The New Yorker – A Bug in the System
The New Yorker, Wil S. Hylton, February 2, 2015.

2014 – Q&A: Food Safety Lawyer Bill Marler on What Not to Eat
The National Law Journal, Interview with Jenna Greene, November 3, 2014.

2012 – Bill Marler, Attorney, Blogger, and Food Safety Advocate, Talks Turkey (Or Spinach, Rather)
Miami New Times, Interview with Ily Goyanes, November 2.

2012 – Bill Marler Interview, Part Two: His Most Difficult Cases and Lobbying Congress
Miami New Times, Interview with Ily Goyanes, November 14.

2012 – Profiles in Public Health Law: Interview with William “Bill” Marler CDC Public Health Law News, July.

2012 – Food Safety Lawyer Bill Marler On Sprouts, Raw Milk, and Why “Local” Isn’t Always Safer Blisstree.com, Hanna Brooks Olsen, March 5.

2011 – Listeria outbreak draws Seattle lawyer to battle
Associated Press, Shannon Dininny, October 9.

2011 – Food-Borne Illness Attorney: Top Foods to Avoid
ABC News, Neal Karlinsky, September 29.

2011 – How to Keep Food Free of Salmonella: Lawsuits
The Atlantic, Barry Estabrook, August 31.

2011 – More Stomach-Churning Facts about the E. Coli Outbreak
New York Times, Mark Bittman, June 8.

2011 – Bill Marler: A Personal Injury Attorney and More
The Xemplar, Nicole Black, June 1.

2011 – Good Food Hero: Bill Marler, Food Safety Attorney
Good Food World, Gail Nickel-Kailing, May 23.

2011- Poisoned: The True Story of the Deadly E. coli Outbreak that Changed the Way Americans Eat.
Inspire Books, Jeff Benedict, May 15

2011 – New Book Chronicles Islander Marler’s Work.
Bainbride Island Review, Connie Mears, May 13.

2010 – Food Safety Lawyer Puts His Money Where Your Mouth Is
AOL News, Andrew Schneider, September 29

2009 – Food Safety Lawyer’s Wish: Put Me Out of Business
Seattle Times, Maureen O’Hagan, November 23

2009 – WSU Discourse on Food Safety, Courtesy Seattle Lawyer
Kitsap Sun, Tristan Baurick,  August 29

2009 – When Food Sickens, He Heads for Courthouse
Minneapolis Star-Tribune, Matt McKinney, June 24

2009 –  Bill Marler, The Food-Safety Litigator
Culinate, Miriam Wolf, April

2009 – Food Fight:Bill Marler’s Beef (PDF)
Washington Law & Politics, David Volk, May

2009 – Candidate for Top FSIS Job talks E. coli Testing, Irradiation, Education
The Meating Place, Ann Bagel Storck, February 6

2009 – Five Minutes with Bill Marler, Well Known Lawyer, Food Safety Activist
CattleNetwork, Chuck Jolley, February 5

2009 – Heath Surveillance the Key to Fresh Produce
The Packer, Tom Karst, February 3

2008 – Seattle Food Contamination Expert in China as Tainted Milk Sickens Thousands of Kids
Seattle Health Examiner, September 23

2008 –  E. Coli Lawyer Is Busier Than Ever
Associated Press, February 4

2007 –  Legally Speaking: The Food Poisoning Lawyer
The Southeast Texas Record, John G. Browning, November 20

2007 –  The Nation’s Leading Food-borne Illness Attorney Tells All
Washington State Magazine, Hannelore Sudermann, August

2007 –  Back to Court: Burst of E. coli Cases Returns Jack in the Box Litigator to the Scene
Meat and Poultry News, Steve Bjerklie, June 8

2007 – Food Fight
Portland Oregonian, Alex Pulaski, March

2007 –  Mr. Food Illness Esquire
QSR Magazine, Fred Minnick, February

2006 –  Seattle Attorney Dominates Food-Borne Illness Litigation
KPLU, October 20

2006 –  How a Tiny Law Firm Made Hay Out of Tainted Spinach
The Wall Street Journal, Heather Won Tesoriero and Peter Lattman, September 27

2005 – Bill Marler – Education Holds Key in Tainted Food Fight
King County Bar Association Bar Bulletin, Ross Anderson, November

2001 –  THE INSIDE STORY: How 11 Schoolkids Got $4.75 Million in E. coli Lawsuit
MeatingPlace.com, Bryan Salvage, March 7

2001 –  Hammer Time: Preparation Pays When Disputes Escalate to Lawsuits
Meat & Poultry Magazine, David Hendee

2001 –  For Seattle Attorney, A Bacterium Brings Riches—and Enemies
The Wall Street Journal, Rachel Zimmerman

2001 –  The Bug That Ate The Burger
Los Angeles Times, Emily Green, June

1999 –  Courting Publicity, Attorney Makes Safe Food His Business
Seattle Post, Maggie Leung, September 7

What the Hell is Listeria?

An Introduction to Listeria

Listeria (pronounced liss-STEER-ē-uh) is a gram-positive rod-shaped bacterium that can grow under either anaerobic (without oxygen) or aerobic (with oxygen) conditions. [4, 18] Of the six species of Listeria, only L. monocytogenes (pronounced maw-NO-site-aw-JUH-neez) causes disease in humans. [18] These bacteria multiply best at 86-98.6 degrees F (30-37 degrees C), but also multiply better than all other bacteria at refrigerator temperatures, something that allows temperature to be used as a means of differentiating Listeria from other contaminating bacteria. [18]

Called an “opportunistic pathogen,” Listeria is noted to cause an estimated 2,600 cases per year of severe invasive illness. [26] Perhaps not surprisingly then, “foodborne illness caused by Listeria monocytogenes has raised significant public health concern in the United States, Europe, and other areas of the world.” [3] As one noted expert observed, summarizing the history of these bacteria and their significance for public health:

Although L. monocytogenes was recognized as an animal pathogen over 80 years ago, the first outbreak confirming an indirect transmission from animals to humans was reported only in 1983, in Canada’s Maritime provinces. In that outbreak, cabbages, stored in the cold over the winter, were contaminated with Listeria through exposure to infected sheep manure. A subsequent outbreak in California in 1985 confirmed the role of food in disseminating listeriosis. Since then Listeria has been implicated in many outbreaks of food-borne illness, most commonly from exposure to contaminated dairy products and prepared meat products, including turkey and deli meats, pâté, hot dogs and seafood and fish. [4]

Given its widespread presence in the environment and food supply, the ingestion of Listeria has been described as an “exceedingly common occurrence.” [18]

The Incidence of Listeria Infections

Listeria bacteria are found widely in the environment in soil, including in decaying vegetation and water, and may be part of the fecal flora of a large number of mammals, including healthy human adults. [4, 18] According to the FDA, “studies suggest that 1-10% of humans may be intestinal carriers of Listeria.” [14] Another authority notes that the “organism has been isolated from the stool of approximately 5% of healthy adults.” [18] Overall, seasonal trends show a notable peak in total Listeria cases and related-deaths from July through October. [3]

Ingested by mouth, Listeria is among the most virulent foodborne pathogens, with up to 20% of clinical infections resulting in death. [3] These bacteria primarily cause severe illness and death in persons with immature or compromised immune systems. [13, 18] Consequently, most healthy adults can be exposed to Listeria with little to any risk of infection and illness. [4, 11]

A study published in 1995 projected Listeria infection-rates to the U.S. population, suggesting that an estimated 1,965 cases and 481 deaths occurred in 1989 compared with an estimated 1,092 cases and 248 deaths in 1993, a 44% and 48% reduction in illness and death, respectively. [25] In comparison, a USDA study published in 1996 estimated that there had been 1,795-1860 Listeria-related cases in 1993, and 445-510 deaths, with 85-95% of these attributable to the consumption of contaminated food. [28] Listeriosis-related mortality rates decreased annually by 10.7% from 1990 through 1996, and by 4.3% from 1996 through 2005. [3]

Among adults 50 years of age and older, infection rates were estimated to have declined from 16.2 per 1 million in 1989 to 10.2 per 1 million in 1993. [25] Perinatal disease decreased from 17.4 cases per 100,000 births in 1989 to 8.6 cases per 100,000 births in 1993. [25] Neonatal infections are often severe, with a mortality rate of 25-50%. [4]

According to the CDC’s National Center for Zoonotic, Vector-Borne, and Enteric Diseases:

Listeriosis was added to the list of nationally notifiable diseases in 2001. To improve surveillance, the Council of State and Territorial Epidemiologists has recommended that all L. monocytogenes isolates be forwarded to state public health laboratories for subtyping through the National Molecular Subtyping Network for Foodborne Disease Surveillance (PulseNet). All states have regulations requiring health care providers to report cases of listeriosis and public health officials try to interview all persons with listeriosis promptly using a standard questionnaire about high-risk foods. In addition, FoodNet conducts active laboratory- and population-based surveillance. [7]

In 2006, public health officials from 48 states reported 1,270 foodborne disease outbreaks, with a confirmed or suspect source in 884 of the outbreaks (70%). [8] Only one of the outbreaks with a confirmed source was attributed to Listeria, with this outbreak involving eleven hospitalizations and one death. [8] The next year, of 17,883 lab-confirmed infections, the CDC attributed 122 to Listeria. [9] In 2009, there were 158 confirmed Listeria infections, representing an incidence-rate of .34 cases for every 100,000 persons in the United States. [10] Such data revealed an incidence-rate of 0.27 cases per 100,000 persons, a decrease of 42% compared with 1996—1998. [10] But, according to CDC’s Technical Information website, it is estimated that there are 1,600 cases of Listeria infection annually in the United States, based on data through 2008. [7]

The 2009 numbers represented a reported 30% decrease in the number of infections compared to the 1996—1998 rates of infection. [10] Although the nature and degree of underreporting is subject to dispute, all agree that the confirmed cases represent just the tip of the iceberg. [6, 13] Indeed, one study estimates the annual incidence rate for Listeria to be around 1,795-1,860 cases per 100,000 persons, with 445-510 of the cases ending in death. [28]

Finally, in a study of FoodNet laboratory-confirmed invasive cases—where infection is detected in blood, cerebrospinal fluid, amniotic fluid, placenta or products of conception—the number of listeriosis cases decreased by 24% from 1996 through 2003. [33] During this same period, pregnancy-associated disease decreased by 37%, while cases among those fifty years old and older decreased by 23%. [33]

The Prevalence of Listeria in Food and the Environment

Listeria is a common presence in nature, found widely in such places as water, soil, infected animals, human and animal feces, raw and treated sewage, leafy vegetables, effluent from poultry and meat processing facilities, decaying corn and soybeans, improperly fermented silage, and raw (unpasteurized) milk. [18, 23, 27] Foods commonly identified as sources of Listeria infection include improperly pasteurized fluid milk, cheeses (particularly soft-ripened varieties, such as traditional Mexican cheeses, Camembert and ricotta), ice cream, raw vegetables, fermented raw-meat sausages, raw and cooked poultry, and cooked, ready-to-eat (RTE) sliced meats—often referred to as “deli meats”. [18, 21, 23, 28] One study found that, over a five-year period of testing, in multiple processing facilities, Listeria monocytogenes was isolated from 14% of 1,080 samples of smoked finfish and smoked shellfish. [16]

Ready-to-eats foods have been found to be a notable and consistent source of Listeria. [14, 21] For example, a research-study done by the Listeria Study Group found that Listeria monocytogenes grew from at least one food specimen in the refrigerators of 64% of persons with a confirmed Listeria infection (79 of 123 patients), and in 11% of more than 2000 food specimens collected in the study. [21] Moreover, 33% of refrigerators (26 of 79) contained foods that grew the same strain with which the individual had been infected, a frequency much higher than would be expected by chance. [21] A widely cited USDA study that reviewed the available literature also summarized that:

In samples of uncooked meat and poultry from seven countries, up to 70 percent had detectable levels of Listeria [13]. Schuchat [23] found that 32 percent of the 165 culture-confirmed listeriosis cases could be attributed to eating food purchased from store delicatessen counters or soft cheeses. In Pinner [21] microbiologic survey of refrigerated foods specimens obtained from households with listeriosis patients, 36 percent of the beef samples and 31 percent of the poultry samples were contaminated with Listeria.

The prevalence of Listeria in ready-to-eat meats has not proven difficult to explain. [26, 29] As one expert in another much-cited article has noted:

The centralized production of prepared ready-to-eat food products…increases the risk of higher levels of contamination, since it requires that foods be stored for long periods at refrigerated temperatures that favor the growth of Listeria. During the preparation, transportation and storage of prepared foods, the organism can multiply to reach a threshold needed to cause infection. [4]

The danger posed by the risk of Listeria in ready-to-eat meats has prompted the USDA to declare the bacterium an adulterant in these kinds of meat products and, as a result, to adopt a zero-tolerance policy for the presence of this deadly pathogen. [7, 29]

A USDA Baseline Data Collection Program done in 1994 documented Listeria contamination on 15.0% of broiler-chicken carcasses [30]. Subsequent USDA data-collection did not test for the prevalence of Listeria in chicken or in turkeys. [31, 32]

Transmission and Infection

Except for the transmission of mother to fetus, human-to-human transmission of Listeria is not known to occur. [18] Infection is caused almost exclusively by the ingestion of the bacteria, most often through the consumption of contaminated food. [18, 21, 23] The most widely-accepted estimate of foodborne transmission is 85-95% of all Listeria cases. [23, 28]

The infective dose—that is, the amount of bacteria that must be ingested to cause illness—is not known. [4, 18, 26] In an otherwise healthy person, an extremely large number of Listeria bacteria must be ingested to cause illness—estimated to be somewhere between 10–100 million viable bacteria (or colony forming units “CFU”) in healthy individuals, and only 0.1–10 million CFU in people at high risk of infection. [4, 18, 26] Even with such a dose, a healthy individual will suffer only a fever, diarrhea, and related gastrointestinal symptoms. [4, 18].

The amount of time from infection to the onset of symptoms—typically referred to as the incubation period—can vary to a significant degree. Symptoms of Listeria infection can develop at any time from 2 to 70 days after eating contaminated food. [4, 5] According to one authoritative text:

The incubation period for invasive illness is not well established, but evidence from a few cases related to specific ingestions points to 11 to 70 days, with a mean of 31 days. In one report, two pregnant women whose only common exposure was attendance at a party developed Listeria bacteremia with the same uncommon enzyme type; incubation periods for illness were 19 and 23 days. [18]

Adults can get listeriosis by eating food contaminated with Listeria, but babies can be born with listeriosis if their mothers eat contaminated food during pregnancy. [4, 24] The mode of transmission of Listeria to the fetus is either transplacental via the maternal blood stream or ascending from a colonized genital tract. [24] Infections during pregnancy can cause premature delivery, miscarriage, stillbirth, or serious health problems for the newborn. [18, 24]

Incidence of Listeria infection in HIV-positive individuals is higher than in the general population. [17, 18] One study found that:

The estimated incidence of listeriosis among HIV-infected patients in metropolitan Atlanta was 52 cases per 100,000 patients per year, and among patients with AIDS it was 115 cases per 100,000 patients per year, rates 65–145 times higher than those among the general population. HIV-associated cases occurred in adults who were 29–62 years of age and in postnatal infants who were 2 and 6 months of age. [17]

Pregnant women make up around 30% of all infection cases, while accounting for 60% of cases involving the 10- to 40-year age group. [18]

Those Most Susceptible to Infection

Several segments of the population are at increased risk and need to be informed so that proper precautions can be taken. [19,20, 27] The body’s defense against Listeria is called “cell-mediated immunity” because the success of defending against infection depends on our cells (as opposed to our antibodies), especially lymphocytes called “T-cells.” [12] Therefore, individuals whose cell-mediated immunity is suppressed are more susceptible to the devastating effects of listeriosis, including especially HIV-infected individuals, who have been found to have a Listeria-related mortality of 29%. [12, 17, 18]

Pregnant women naturally have a depressed cell-mediated immune system. [18, 24] In addition, the immune systems of fetuses and newborns are very immature and are extremely susceptible to these types of infections. [24] Other adults, especially transplant recipients and lymphoma patients, are given necessary therapies with the specific intent of depressing T-cells, and these individuals become especially susceptible to Listeria as well. [7, 18, 27]

According to the CDC and other public health organizations, individuals at increased risk for being infected and becoming seriously ill with Listeria include the following groups:

  • Pregnant women: They are about 20 times more likely than other healthy adults to get listeriosis. About one-third of listeriosis cases happen during pregnancy.
  • Newborns: Newborns rather than the pregnant women themselves suffer the serious effects of infection in pregnancy.
  • Persons with weakened immune systems
  • Persons with cancer, diabetes, or kidney disease
  • Persons with AIDS: They are almost 300 times more likely to get listeriosis than people with normal immune systems.
  • Persons who take glucocorticosteroid medications (such as cortisone)
  • The elderly [11, 20, 21]

Symptoms of Listeria infection

When a person is infected and develops symptoms of Listeria infection, the resulting illness is called listeriosis. [4, 11, 18] Only a small percentage of persons who ingest Listeria fall ill or develop symptoms. [18] For those who do develop symptoms as a result of their infection, the resulting illness is either mild or quite severe—sometimes referred to as a “bimodal distribution of severity.” [13, 28]

On the mild end of the spectrum, listeriosis usually consists of the sudden onset of fever, chills, severe headache, vomiting, and other influenza-type symptoms. [18, 28] Along these same lines, the CDC notes that infected individuals may develop fever, muscle aches, and sometimes gastrointestinal symptoms such as nausea or diarrhea. [11] When present, the diarrhea usually lasts 1-4 days (with 42 hours being average), with 12 bowel movements per day at its worst. [18]

Most healthy adults and children who consume contaminated food experience only mild to moderate symptoms. The infection is usually self-limited, since, in healthy hosts, exposure to Listeria stimulates the production of tumour necrosis factor and other cytokines, which activate monocytes and macrophages to eradicate the organism. Few people with normal immune function go on to have more severe, life-threatening forms of listeriosis, characterized by septic shock, meningitis and encephalitis. [4]

As already noted, when pregnant, women have a mildly impaired immune system that makes them susceptible to Listeria infection. [19] If infected, the illness appears as an acute fever, muscle pain, backache, and headache. [18, 24] Illness usually occurs in the third trimester, which is when immunity is at its lowest. [18] Infection during pregnancy can lead to premature labor, miscarriage, infection of the newborn, or even stillbirth. [24, 28] Twenty-two percent of such infections result in stillbirth or neonatal death. [18]

Newborns may present clinically with early-onset (less than 7 days) or late-onset forms of infection (7 or more days). [3] Those with the early-onset form are often diagnosed in the first 24 hours of life with sepsis (infection in the blood). [3, 18] Early-onset listeriosis is most often acquired through trans-placental transmission. [18, 24] Late-onset neonatal listeriosis is less common than the early-onset form. [4, 18, 24] Clinical symptoms may be subtle and include irritability, fever and poor feeding. [24] The mode of acquisition of late-onset listeriosis is poorly understood. [18, 24]

Diagnosis and Treatment of Listeria Infections

Because there are few symtpoms that are unique to listeriosis, doctors must consider a variety of potential causes for infection, including viral infections (like flu), and other bacterial infections that may cause sepsis or meningitis. [4, 18, 19]

Early diagnosis and treatment of listeriosis in high-risk patients is critical, since the outcome of untreated infection can be devastating. This is especially true for pregnant women because of the increased risk of spontaneous abortion and preterm delivery. Depending on the risk group, rates of death from listeriosis range from 10% to 50%, with the highest rate among newborns in the first week of life. [4]

Methods typically used to identify diarrhea-causing bacteria in stool cultures interfere or limit the growth of Listeria, making it less likely to be identified and isolated for further testing. [18] On the other hand, routine methods are effective for isolating Listeria from spinal fluid, blood, and joint fluid. [4, 18] Magnetic-resonance imaging (MRI) is used to confirm or rule out brain or brain stem involvement. [18]

Listeriosis is usually a self-limited illness—which means that a majority of infected individuals will improve without the need for medical care. [4, 11, 14, 18] But for those patients with a high fever, a stool culture and antibiotic-treatment may be justified for otherwise healthy individuals. [4, 18] Although there have been no studies done to determine what drugs or treatment duration is best, ampicillin is generally considered the “preferred agent.” [18] There is no consensus on the best approach for patients who are allergic to penicillins.[18]

Invasive infections with Listeria can be treated with antibiotics. [18] When infection occurs during pregnancy, antibiotics given promptly to the pregnant woman can often prevent infection of the fetus or newborn. [18, 24] Babies with listeriosis receive the same antibiotics as adults, although a combination of antibiotics is often used until physicians are certain of the diagnosis.

Complications of Listeria infection

For those persons who suffer a Listeria infection that does not resolve on its own, the complications (or sequelae) can be many. [4, 28] The most common is septicemia (bacterial pathogens in the blood, also known as bacteremia), with meningitis being the second most common. [4, 18] Other complications can include inflammation of the brain or brain stem (encephalitis), brain abscess, inflammation of the heart-membrane (endocarditis), and localized infection, either internally or of the skin. [18]

Death is the most severe consequence of listeriosis, and it is tragically common. [3] For example, based on 2009 FoodNet surveillance data, 89.2% of Listeria patients ended up in the hospital, the highest hospitalization rate for pathogenic bacterial infection. [10] In persons 50 years of age and older, there was a 17.5% fatality rate—also the highest relative to other pathogens. [10, 18]

The Economic Impact of Listeria Infections

The USDA Economic Research Service (ERS) published its first comprehensive cost estimates for sixteen foodborne bacterial pathogens in 1989. [22] Five years later, it was estimated that, in 1993, there were 1,795 to 1,860 Listeria infections that required hospitalization, with 295-360 of these cases involving pregnant women. [28] Based on these estimates, the medical costs that Listeria infections had caused each year were said to run from $61.7 to $64.8 million, including those individuals who ultimately died as a result of their infections. [28] For these same acute cases, productivity costs were estimated to run from $125.8 to $154.4 million a year. [28] The productivity costs associated with Listeria-related chronic illness was estimated to be an additional $38 million a year. [28] In sum, “[e]stimates of total costs for the 1,795 to 1,860 cases of listeriosis range from $232.7 million to $264.4 million annually.” [28]

In 2000, USDA updated the cost-estimates for four pathogens: Campylobacter, Salmonella, E. coli O157:H7, and Listeria monocytogenes. [28a] The 2000 estimates were based on the CDC’s then newly-released estimates of annual foodborne illnesses, and put the total cost in the United States for these four pathogens at $6.5 billion a year. [28a] For Listeria specifically, it was estimated that costs amounted to $2.3 billion per year, based on 2,493 cases, which involved 2,298 hospitalizations and 499 deaths. [28a] More recently, in 2007, it was estimated that the worldwide cost of all foodborne disease was $1.4 trillion per year. [6]

Real Life Impacts of Listeria Infection

Because Listeria infection is most severe in elderly persons, pregnant women and newborns, the symptoms of infection vary greatly.

  • In older adults or immunocompromised individuals, septicemia (Listeria bacteria in the blood stream) and meningitis are the most common indicators of illness.
  • In pregnant women, a mild, flu-like illness can be followed by miscarriage, premature delivery or stillbirth.
  • In newborns, bacteremia (Listeria bacteria in the blood stream) and meningitis are the most common indicators of Listeria

Antimicrobial Resistance in Bacteria

Antimicrobial resistance in bacteria is an emerging and increasing threat to human health. [1, 4] Physicians are increasingly aware that antimicrobial resistance is increasing in foodborne pathogens and that, as a result, patients who are prescribed antibiotics are at increased risk for acquiring antimicrobial-resistant foodborne infections. [1] Indeed, “increased frequency of treatment failures for acute illness and increased severity of infection may be manifested by prolonged duration of illness, increased frequency of bloodstream infections, increased hospitalization or increased mortality.” [3]

The use of antimicrobial agents in the feed of food animals is estimated by the FDA to be over 100 million pounds per year. [4] It is estimated that 36% to 70% of all antibiotics produced in the United States are used in a food animal feed or in prophylactic treatment to prevent animal disease. [3, 4, 18] In 2002, the Minnesota Medical Association published an article by David Wallinga, M.D., M.P.H. who wrote:

According to the [Union of Concerned Scientists], 70 percent of all the antimicrobials used in the United States for all purposes—or about 24.6 million pounds annually—are fed to poultry, swine, and beef cattle for nontherapeutic purposes, in the absence of disease. Over half are “medically important” antimicrobials; identical or so closely related to human medicines that resistance to the animal drug can confer resistance to the similar human drug. Penicillin, tetracycline, macrolides, streptogramins, and sulfonamides are prominent examples. [33]

The use of antibiotics in feed for food animals, on animals prophylactically to prevent disease, and the use of antibiotics in humans unnecessarily must be reduced. [1, 25] European countries have reduced the use of antibiotics in animal feed and have seen a corresponding reduction in antibiotic-resistant illnesses in humans. [1, 4]

The Prevention of Listeria infection

Given its widespread presence in the environment, and the fact that the vast majority of Listeria infections are the result of consuming contaminated food or water, preventing illness and death is necessarily (and understandably) a food safety issue:

Listeria presents a particular concern with respect to food handling because it can grow at refrigerator temperatures (4°C to 10°C), temperatures commonly used to control pathogens in foods. Freezing also has little detrimental effect on the microbe. Although pasteurization is sufficient to kill Listeria, failure to reach the desired temperature in large packages can allow the organism to survive. Food can also be contaminated after processing by the introduction of unpasteurized material, as happens during the preparation of some cheeses. Listeriacan also be spread by contact with contaminated hands, equipment and counter tops. [4]

The use of irradiation to reduce Listeria to safe levels in foods has many proponents. [26] As noted by an eminent CDC researcher, Robert V. Tauxe:

Ready-to-eat meats, such as hot dogs, have already been subjected to a pathogen-killing step when the meat is cooked at the factory, so contamination is typically the result of in-plant contamination after that step. Improved sanitation in many plants has reduced the incidence of infection by half since 1986, but the risk persists, as illustrated by a large hot dog-associated outbreak that occurred in 1999. Additional heat treatment or irradiation of meat after it is packaged would eliminate Listeria that might be present at that point. [26]

The CDC provides a comprehensive list of recommendations and precautions to avoid becoming infected with Listeria, which are as follows:

  • Thoroughly cook raw food from animal sources, such as beef, pork, or poultry to a safe internal temperature. For a list of recommended temperatures for meat and poultry, visit http://www.fsis.usda.gov/PDF/IsItDoneYet_Magnet.pdf.
  • Rinse raw vegetables thoroughly under running tap water before eating.
  • Keep uncooked meats and poultry separate from vegetables and from cooked foods and ready-to-eat foods.
  • Do not drink raw (unpasteurized) milk, and do not eat foods that have unpasteurized milk in them.
  • Wash hands, knives, countertops, and cutting boards after handling and preparing uncooked foods.
  • Consume perishable and ready-to-eat foods as soon as possible.

Recommendations for persons at high risk, such as pregnant women and persons with weakened immune systems, in addition to the recommendations listed above, include:

Meats

  • Do not eat hot dogs, luncheon meats, cold cuts, other deli meats (e.g., bologna), or fermented or dry sausages unless they are heated to an internal temperature of 165°F or until steaming hot just before serving.
  • Avoid getting fluid from hot dog and lunch meat packages on other foods, utensils, and food preparation surfaces, and wash hands after handling hot dogs, luncheon meats, and deli meats.
  • Do not eat refrigerated pâté or meat spreads from a deli or meat counter or from the refrigerated section of a store. Foods that do not need refrigeration, like canned or shelf-stable pâté and meat spreads, are safe to eat. Refrigerate after opening.

Cheeses

  • Do not eat soft cheese such as feta, queso blanco, queso fresco, brie, Camembert, blue-veined, or panela (queso panela) unless it is labeled as made with pasteurized milk. Make sure the label says, “MADE WITH PASTEURIZED MILK.”

Seafood

  • Do not eat refrigerated smoked seafood, unless it is contained in a cooked dish, such as a casserole, or unless it is a canned or shelf-stable product. Refrigerated smoked seafood, such as salmon, trout, whitefish, cod, tuna, and mackerel, is most often labeled as “nova-style,” “lox,” “kippered,” “smoked,” or “jerky.” These fish are typically found in the refrigerator section or sold at seafood and deli counters of grocery stores and delicatessens. Canned and shelf stable tuna, salmon, and other fish products are safe to eat

Recommendations to keep food safe:

  • Be aware that Listeria monocytogenes can grow in foods in the refrigerator. Use an appliance thermometer, such as a refrigerator thermometer, to check the temperature inside your refrigerator. The refrigerator should be 40°F or lower and the freezer 0°F or lower.
  • Clean up all spills in your refrigerator right away–especially juices from hot dog and lunch meat packages, raw meat, and raw poultry.
  • Clean the inside walls and shelves of your refrigerator with hot water and liquid soap, then rinse.
  • Divide leftovers into shallow containers to promote rapid, even cooling. Cover with airtight lids or enclose in plastic wrap or aluminum foil. Use leftovers within 3 to 4 days.
  • Use precooked or ready-to-eat food as soon as you can. Do not store the product in the refrigerator beyond the use-by date; follow USDA refrigerator storage time guidelines:
    – Hot Dogs – store opened packages no longer than 1 week and unopened packages no longer than 2 weeks in the refrigerator.
    – Luncheon and Deli Meat – store factory-sealed, unopened packages no longer than 2 weeks. Store opened packages and meat sliced at a local deli no longer than 3 to 5 days in the refrigerator. [11]

Additional preventive steps and precautions can be found on the websites of most State Departments of Health, including, for example, the Minnesota Department of Health. [20] There is also excellent information to be found at the Extension Service website of the Institute of Food and Agricultural Sciences at University of Florida. [27]

Recalls

When public health officials learn of potential Listeria contamination in a food product, that food is removed from the marketplace to prevent Listeria outbreaks.

Recalls of Listeria-contaminated foods are almost always voluntary; however, if a company refuses to recall its products, the U.S. Food and Drug Administration (FDA) and U.S. Department of Agriculture’s Food Safety and Inspection Service (FSIS) have the legal authority to detain and seize those food products in commerce.

Sometimes companies discover Listeria contamination in their products and issue Listeria-related recalls on their own. Other times, companies recall products for potential Salmonella contamination if FDA or FSIS testing has revealed Listeria in a food or if FDA or FSIS has learned of a Listeria outbreak associated with a food.

FDA and FSIS Food Recall Management

In the case of FDA-regulated products (all foods except eggs, meat and poultry), FDA’s role is to oversee a company’s recall strategy and to assess the adequacy of the recall.   For USDA-regulated products, the FSIS role is well integrated into the recall process. A Recall Committee, which is housed within the FSIS Recall Management Division, makes recommendations to the company about the need for a recall if Listeria contamination is found.

Food Recall Classifications have been established for both FDA and FSIS. Guidelines are used to categorize food recalls into 1 of 3 classes, according to the level of hazard involved.

FDA Recall Classifications: For all food products except meat, poultry and eggs

Class I: Dangerous or defective products that predictably could cause serious health problems or death. Examples include: food found to contain botulinum toxin, food with undeclared allergens, a label mix-up on a lifesaving drug, or a defective artificial heart valve.

Class II: Products that might cause a temporary health problem, or pose only a slight threat of a serious nature. Example: a drug that is under-strength but that is not used to treat life-threatening situations.

Class III: Products that are unlikely to cause any adverse health reaction, but that violate FDA labeling or manufacturing laws. Examples include: a minor container defect and lack of English labeling in a retail food.

More information about FDA food recall policy can be found on the FDA Product Recall page. http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm049070.htm

USDA Recall Classifications: For all meat, poultry and egg products

Class I: This is a health hazard situation where there is a reasonable probability that the use of the product will cause serious, adverse health consequences or death.

Class II: This is a health hazard situation where there is a remote probability of adverse health consequences from the use of the product.

Class III: This is a situation where the use of the product will not cause adverse health consequences.

More information about USDA/FSIS food recall policy can be found on the FSIS Food Recall page. http://www.fsis.usda.gov/Factsheets/FSIS_Food_Recalls/index.asp#7

References

  1. Angulo, F.J., et al., “Antimicrobial Use in Agriculture: Controlling the Transfer of Antimicrobial Resistance to Humans,” SEMINARS IN PEDIATRIC INFECTIOUS DISEASES, Vol. 15, No. 2, pp. 78-85 (April 2004).
  2. Angulo, F.J., et al., “Evidence of an Association Between Use of Anti-microbial Agents in Food Animals and Anti-microbial Resistance Among Bacteria Isolated from Humans and the Human Health Consequences of Such Resistance, JOURNAL OF VETERINARY MEDICINE, Series-B, Vol. 51, Issue 8-9, pp. 374-79 (Oct. 2004).
  3. Bennion, J.R., et al., “Decreasing Listeriosis Mortality in the United States, 1990-2005,” CLINICAL INFECTIOUS DISEASES, Vol. 47, No. 7, pp. 867-74 (2008), available online at http://cid.oxfordjournals.org/content/47/7/867.long
  4. Bortolussi, R, “Listeriosis: A Primer,” CANADIAN MEDICAL ASSOCIAION JOURNAL, Vol. 179, No. 8, pp. 795-7 (Oct. 7, 2008), online at http://www.cmaj.ca/content/179/8/795.long
  5. Bryan, Frank, “Procedures to Investigate Foodborne Illness,” International Association for Food Protection, p. 119 (5th 1999).
  6. Buzby, Jean and Roberts, Tonya, “The Economics of Enteric Infections: Human Foodborne Disease Costs, GASTROENTEROLOGY, Vol. 136, No. 6, pp. 1851-62 (May 2009).
  7. CDC, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, “Listeriosis—Technical Information,” (last updated: April 6, 2011), available online at http://www.cdc.gov/nczved/divisions/dfbmd/diseases/listeriosis/technical.html
  8. CDC, “Surveillance for Foodborne Disease Outbreaks—United States, 2006,” MORBIDITY AND MORTALITY WEEKLY REPORT, Vol. 58, No. 22, pp. 609-15 (June 12, 2007) at http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5822a1.htm
  9. CDC, “Preliminary FoodNet Data on the Incidence of Infection with Pathogens Transmitted Commonly through Food—10 States, 2007,” MORBIDITY AND MORTALITY WEEKLY REPORT, Vol. 57, No. 14, pp. 366-70 (April 11, 2008), available online at http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5714a2.htm
  10. CDC, “Preliminary FoodNet Data on the Incidence of Infection with Pathogens Transmitted Commonly through Food—10 States, 2009,” MORBIDITY AND MORTALITY WEEKLY REPORT, Vol. 59, No. 14, pp. 418-22 (April 16, 2010) available online at http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5914ahtm
  11. CDC, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, “Listeriosis—General Information and Frequently Asked Questions,” (last updated: April 6, 2011), available at http://www.cdc.gov/nczved/divisions/dfbmd/diseases/listeriosis/
  12. Cossart, P. and Bierne, H., “The Use f Host Cell Machinery in the Pathogenesis of Listeria monocytogenes,” CURRENT OPINIONS IN IMMUNOLOGY, Vol. 13, No. 1, pp. 96-103 (Feb. 2001).
  13. Council for Agriculture, Science and Technology (CAST), “Foodborne Pathogens: Risks and Consequences: Task Force Report No.122,” pp. 1-87 (Sept. 1994) download at http://www.castscience.org/publications/index.cfm/foodborne_pathogens_risks_and_consequences?show=product&productID=2852
  14. FDA, “Bad Bug Book: Foodborne Pathogenic Microorganisms and Natural Toxins Handbook—Listeria monocytogenes,” at http://www.cfsan.fda.gov/~mow/chap6.html (site last updated: June 18, 2009).
  15. FDA, Public Meeting, “Listeria monocytogenes Risk Assessment and Risk Management: December 4, 2003 Meeting,” Meeting Agenda and Presentations, available online at http://www.fda.gov/Food/ScienceResearch/ResearchAreas/RiskAssessmentSafetyAssessment/ucmhtm For Notice of Public Meeting, see 68 Fed. Reg., Vol. 68, No. 216, at 63108-09, online at http://www.fda.gov/OHRMS/DOCKETS/98fr/03-28045.pdf
  16. Heinitz, M.L. and Johnson, J.M., “The incidence of Listeria, Salmonella spp., and Clostridium botulinum in Smoked Fish and Shellfish,” Journal of Food Protection, Vol. 61, pp. 318-23 (March 1998).
  17. Jurado, R.L., et al., “Increased Risk of Meningitis and Bacteremia Due to Listeria monocytogenes in Patients with Human Immunodeficiency Virus Infection,” Clinical Infectious Diseases, Vol. 17, No. 2, pp. 224-7 (1993).
  18. Lorber, Bennett, “Listeria monocytogenes,” in Mandell, Douglas, And Bennett’s PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES, Fifth Edition, Chap. 195, pp. 2208-14 (2000, Mandell, Bennett, and Dolan, Editors).
  19. Mayo Clinic. (2009). Listeria infection (listeriosis). Retrieved November 1, 2009 from Mayo Clinic website: http://www.mayoclinic.com/health/Listeria-infection/DS00963.
  20. Minnesota Department of Health (MDH), “Preventing Listeriosis,” available online at http://www.health.state.mn.us/divs/idepc/diseases/listeriosis/prevention.html
  21. Pinner, R.W., et al., “Role of Foods in Sporadic Listeriosis. II. Microbiologic and epidemiologic investigation, JOURNAL OF AMERICAN MEDICAL ASSOCIATION, Vol. 267, No. 15, pp. 2046-50 (April 15, 1992).
  22. Roberts, T, “Human Illness Costs of Foodborne Bacteria,” AMERICAN JOURNAL OF AGRICULTURE ECONOMICS, Vol. 71, No. 2, pp. 468-474 (1989).
  23. Schuchat, A, et al., “Role of Foods in Sporadic Listeriosis. I. Case-control Study of Dietary Risk Factors,” JOURNAL OF AMERICAN MEDICAL ASSOCIATION, Vol. 267, No. 15, pp. 2041-5 (April 15, 1992).
  24. Silver, HM, “Listeriosis during pregnancy,” OBSTETRICAL AND GYNECOLOGICAL SURVEY, Vol. 53, Issue 12, pp. 737-740 (Dec. 1998).
  25. Tappero, JW, et al., “Reduction in the Incidence of Human Listeriosis in the United States: Effectiveness of Prevention Efforts,” JOURNAL OF AMERICAN MEDICAL ASSOCIATION, Vol. 273, No. 14, pp. 1118-22 (April 12, 1995).
  26. Tauxe, Robert, CDC, “Food Safety and Irradiation: Protecting the Public from Foodborne Infections,” EMERGING INFECTIOUS DISEASES, Vol. 7, No. 3, pp. 516-21 (June 2001) at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631852/pdf/11485644.pdf
  27. University of Florida, IFIS Extension, “Preventing Foodborne Illness: Listeriosis,” Food Science and Human Nutrition Department, Florida Cooperative Extension Service, (Jan. 2003) online at http://edis.ifas.ufl.edu/fs102
  28. USDA Economic Research Service, “Bacterial Foodborne Disease—Medical Costs and Productivity Losses,” AER-741, August 1996 (authors: Jean C. Buzby, et al.) online at http://www.ers.usda.gov/Publications/AER741/
  29. 28a. USDA Economic Research Service, S. Crutchfield and T. Roberts, “Food Safety Efforts Accelerate in the 90’s,” FOOD REVIEW, Vol. 23, No. 3, pp. 44-49 (Sept.-Dec. 2000), online at http://www.ers.usda.gov/publications/foodreview/septdec00/FRsept00h.pdf
  30. USDA Food Safety and Inspection Service (FSIS), “Assessing the Effectiveness of theListeria monocytogenes Interim Final Rule, Summary Report,” (Sept. 28, 2004), available online at http://www.fsis.usda.gov/Oppde/rdad/frpubs/97-013F/LM_Assessment_Report_2004.pdf
  31. USDA FSIS, NATIONWIDE BROILER CHICKEN MICROBIOLOGICAL BASELINE DATA COLLECTION PROGRAM, July 1994—July 1995, (April 1996), full report available online at http://www.fsis.usda.gov/OPHS/baseline/broilerpdf
  32. USDA FSIS, THE NATIONWIDE MICROBIOLOGICAL BASELINE DATA COLLECTION PROGRAM: YOUNG CHICKEN SURVEY, July 2007—June 2008, full report available online at http://www.fsis.usda.gov/PDF/Baseline_Data_Young_Chicken_2007-2008.pdf
  33. USDA FSIS, THE NATIONWIDE MICROBIOLOGICAL BASELINE DATA COLLECTION PROGRAM: YOUNG TURKEY SURVEY, Aug. 2008—July 2009, at http://www.fsis.usda.gov/PDF/Baseline_Data_Young_Turkey_2008-2009.pdf
  34. Wallinga, D, “Antimicrobial Use in Animal Feed:  An Ecological and Public Health Problem,” MINNESOTA MEDICINE, Vol. 85, No. 10 pp. 12-16 (Oct. 2002).Voetsch, AC, et al., “Reduction in the Incidence of Invasive Listeriosis in Foodborne Diseases Active Surveillance Network Sites, 1996-2003,” CLINICAL INFECTIOUS DISEASES, Vol. 44, No. 4, pp. 513-20 (CDC Control & Prevention Emerging Infections Program, Foodborne Diseases Active Surveillance Network Working Group 2007).

Food Kills Children All Over The World

who_logoThe WHO reports that almost one third (30%) of all deaths from foodborne diseases are in children under the age of 5 years, despite the fact that they make up only 9% of the global population. This is among the findings of WHO’s “Estimates of the global burden of foodborne diseases” – the most comprehensive report to date on the impact of contaminated food on health and well being.

The report, which estimates the burden of foodborne diseases caused by 31 agents – bacteria, viruses, parasites, toxins and chemicals – states that each year as many as 600 million, or almost 1 in 10 people in the world, fall ill after consuming contaminated food. Of these, 420,000 people die, including 125,000 children under the age of 5 years.

While the burden of foodborne diseases is a public health concern globally, the WHO African and South-East Asia Regions have the highest incidence and highest death rates, including among children under the age of 5 years.

Diarrheal diseases are responsible for more than half of the global burden of foodborne diseases, causing 550 million people to fall ill and 230,000 deaths every year. Children are at particular risk of foodborne diarrheal diseases, with 220 million falling ill and 96,000 dying every year. Eating raw or undercooked meat often causes diarrhea, eggs, fresh produce and dairy products contaminated by norovirus, Campylobacter, non-typhoidal Salmonella and pathogenic E. coli. Other major contributors to the global burden of foodborne diseases are typhoid fever, hepatitis A, Taenia solium (a tapeworm), and aflatoxin (produced by mold on grain that is stored inappropriately).

infogrpahic_global_enCertain diseases, such as those caused by non-typhoidal Salmonella, are a public health concern across all regions of the world, in high- and low-income countries alike. Other diseases, such as typhoid fever, foodborne cholera, and those caused by pathogenic E. coli, are much more common to low-income countries, while Campylobacter is an important pathogen in high-income countries. The risk of foodborne diseases is most severe in low- and middle-income countries, linked to preparing food with unsafe water; poor hygiene and inadequate conditions in food production and storage; lower levels of literacy and education; and insufficient food safety legislation or implementation of such legislation.

Foodborne diseases can cause short-term symptoms, such as nausea, vomiting and diarrhea (commonly referred to as food poisoning), but can also cause longer-term illnesses, such as cancer, kidney or liver failure, brain and neural disorders. These diseases may be more serious in children, pregnant women, and those who are older or have a weakened immune system. Children who survive some of the more serious foodborne diseases may suffer from delayed physical and mental development, impacting their quality of life permanently.

Food safety is a shared responsibility, says WHO. The report’s findings underscore the global threat posed by foodborne diseases and reinforce the need for governments, the food industry and individuals to do more to make food safe and prevent foodborne diseases. There remains a significant need for education and training on the prevention of foodborne diseases among food producers, suppliers, handlers and the general public. WHO is working closely with national governments to help set and implement food safety strategies and policies that will in turn have a positive impact on the safety of food in the global marketplace.

Another Hepatitis A Scare in Waterloo New York

The Seneca County Health Department has confirmed a case of Hepatitis A in a food service worker. The food service worker is employed at the Marks Pizzeria located at 1963 Kingdom Plaza, Waterloo, NY 13165. Public health officials state that individuals not previously vaccinated for Hepatitis A and who consumed cold foods, such as subs, salads, vegetables, lemons and celery sticks from Mark’s Pizzeria should seek treatment.

Anyone previously immunized for Hepatitis A by their physician or through clinics recently held by the Seneca County Health Department DO NOT need to be re-immunized.

Individuals who consumed cold foods from the Mark’s Pizzeria located at 1963 Kingdom Plaza, Waterloo, NY 13165 on November 13, 2015 through Wednesday, November 18, 2015 are advised to monitor themselves for signs and symptoms of Hepatitis A for the next 4-6 weeks.

If you consumed cold foods from Mark’s Pizzeria located at 1963 Kingdom Plaza, Waterloo, NY 13165 on Thursday, November 19, 2015 through Saturday, November 28, 2015, you should seek treatment for Hepatitis A.  Clinics will be held in the Seneca County Office Building located at 1 DiPronio Drive Waterloo, NY 3rd Floor Board of Supervisor’s Room on Thursday, December 3, 2015- 1:00 pm-7:00 pm, Monday, December 7, 2015 – 3:00 pm-7:00 pm and Thursday, December 10, 2015- 12:00 pm-4:00 pm.

Individuals are strongly encouraged to preregister and arrive during their scheduled appointment times.

To pre-register visit www.co.seneca.ny.us or for more information call the New York State Department of Health Hotline at 1-844-364-6397.

McDonald’s Class Action Lawsuit Filed After Over 1000 Exposed to Hepatitis A

Marler Clark LLP has filed a class action lawsuit on behalf of at least 1000 people exposed to hepatitis A; Exposure would have been avoided had the hep A vaccination been required for McDonald’s employees.

Screen Shot 2015-11-18 at 5.11.15 PMAs of November 18, 2015, The Food Safety Law Firm, Marler Clark LLP of Seattle and Underberg and Kessler LLP of Rochester have filed a class action lawsuit against the fast-food corporation, Jascor, Inc. d/b/a McDonald’s Restaurant. The plaintiff, Christopher Welch, a Waterloo, New York resident, is a victim of hepatitis A virus (HAV) exposure after eating at the 2500 Mound Road, Waterloo location of McDonald’s on November 3 and November 7, 2015. He has filed on behalf of himself, as an individual, and on behalf of all those similarly situated. The case number is 49796.

On November 13, 2015, The New York State Department of Health and The Seneca County Health Department announced that customers who had visited the Mound Road McDonald’s location between October 31, 2015 and November 8, 2015, had been exposed to hepatitis A through an infected employee. The Health Department urged exposed individuals to obtain HAV vaccinations, as they were at risk to develop infections relating to the exposure.

As a result, upwards of 1000 individuals received post-exposure treatment, including plaintiff Christopher Welch. Post-exposure treatment is recommended for individuals who consumed McDonald’s food for up to two weeks after their date of consumption.

McDonald’s may be found at fault for allowing an employee to work while infected with HAV, for failing to properly supervise, train, or monitor their employees who prepare food for consumption, or for failing to require its food-service employees to obtain HAV immunizations.

Bill Marler, foodborne illness expert and food safety attorney, has been an avid advocate for strengthening preventative measures within the food industry. “Exposure to hepatitis A is entirely preventable,” Marler said. “McDonald’s should have required its employees to be vaccinated against the virus. But because they didn’t, McDonald’s has put itself and all of its customers at risk. Now,” he continued, “McDonald’s has to worry about identifying HAV positive employees, and customers are panicking to receive treatment.” In addition, Marler said, “McDonald’s should reimburse County for the cost of administering the vaccines.”

Exposed employees and customers are filing for damages that include wage loss, medical-related expenses, travel expenses, emotional distress, fear of harm and humiliation, and physical pain and injury.

The acute symptoms of hepatitis A are a sudden onset of flu-like symptoms about a month after the virus is contracted. Muscle aches, headaches, loss of appetite, abdominal discomfort, fever, and jaundice are all typical symptoms of the infection. Urine may turn a dark color and stool could be light or clay-colored. The illness typically lasts a few weeks, but recovery could take up to a year. Most affected individuals show complete recovery within three to six months of the onset of illness. Relapse is possible, although it is more common in children than adults.

The best protection against a hepatitis A infection is to get vaccinated. An estimated 80,000 cases of HAV occur each year, although much higher estimates have been proposed. Hepatitis A is a virus that primarily infects the liver, and an estimated 100 people die each year as a result of acute liver failure in the U.S. due to hepatitis A. However, the rate of infection has dramatically decreased since the hepatitis A vaccine was licensed and became available in the U.S. in 1995.

Because HAV is so readily transmitted, Bill Marler encourages restaurants and food handlers to adhere to strict sanitary protocols. He warns, “The virus is almost exclusively transmitted through fecal-oral contact, so I can’t stress how important it is that all employees thoroughly wash their hands after using the restroom.” For more information about hepatitis A, please visit www.about-hepatitis.com.

Marler Clark, The Food Safety Law Firm, is the nation’s leading law firm representing victims of Hepatitis A outbreaks. The Hepatitis A lawyers of Marler Clark have represented thousands of victims of Hepatitis A and other foodborne illness outbreaks and have recovered over $600 million for clients. Marler Clark is the only law firm in the nation with a practice focused exclusively on foodborne illness litigation. Our Hepatitis A lawyers have litigated Hepatitis A cases stemming from outbreaks traced to a variety of sources, such as green onions, lettuce and restaurant food. The law firm has represented thousands of individuals in class action lawsuits related to HAV, and have brought Hepatitis A lawsuits against such companies as Subway, McDonald’s, Chipotle, Quizno’s and Carl’s Jr.

If you or a family member became ill with a Hepatitis A infection after consuming food and you’re interested in pursuing a legal claim, contact the Marler Clark Hepatitis A attorneys for a free case evaluation.

A History of Hepatitis A Vaccine and Ig Class Action Lawsuits

William D. Marler of the Seattle, Washington–based law firm Marler Clark—has represented thousands of individuals in class action lawsuits related to Hepatitis A vaccines (HAV), including:

  • More than 1,500 individuals in a class action related to a previous HAV outbreak at the D’Angelo’s in Swansea, Massachusetts in 2001
  • Approximately 1,300 persons as part of a class action on behalf of persons who received IG shots due to an HAV outbreak in June and July 2000 in Spokane, Washington, which was associated with food served at a Carl’s Jr. fast-food restaurant
  • Approximately 9,000 persons who received IG shots due to an outbreak of HAV at a Chi-Chi’s restaurant near Pittsburgh, Pennsylvania in 2003
  • Approximately 3,800 persons as part of a class action on behalf of persons who received IG shots due to an HAV exposure in June 2004 at a Friendly’s restaurant in Arlington, Massachusetts
  • Approximately 850 persons as part of a class action on behalf of persons who received IG shots due to an HAV exposure at a Quizno’s in Boston, Massachusetts in 2004
  • Over 3,000 persons who received IG shots due to potential HAV exposure in January 2007 at a Houlihan’s restaurant in Geneva, Illinois
  • More than 5,000 persons who were required to get vaccinations against HAV following exposure at a McDonald’s restaurant in Milan, Illinois in 2009
  • Approximately 1500 claimants who dined at The Olive Garden Italian Restaurant in Fayetteville, North Carolina who thereby were required to get vaccinations against HAV following their potential exposure to hepatitis A
  • All persons who consumed food and drink at a McDonald’s Restaurant in Northport, Alabama on March 14, 2012 or on March 16, 2012, and who thereby were required to get vaccinations against HAV following their potential exposure to HAV
  • More than 700 claimants who consumed food or drink purchased at a Papa John’s restaurant in Charlotte, North Carolina in March and April 2014, and who thereby were required to get vaccinations against HAV following their potential exposure to hepatitis A
  • Approximately 3,000 claimants who ate at a Red Robin in Springfield, Missouri would were exposed to a HAV infected worker and who received HAV vaccines.
  • Presently Marler Clark is class counsel for a nationwide putative HAV class involving as many as 25,000 claimants.

Hepatitis A: Marler Clark, The Food Safety Law Firm, is the nation’s leading law firm representing victims of Hepatitis A outbreaks. The Hepatitis A lawyers of Marler Clark have represented thousands of victims of Hepatitis A and other foodborne illness outbreaks and have recovered over $600 million for clients. Marler Clark is the only law firm in the nation with a practice focused exclusively on foodborne illness litigation. Our Hepatitis A lawyers have litigated Hepatitis A cases stemming from outbreaks traced to a variety of sources, such as green onions, lettuce and restaurant food. The law firm has brought Hepatitis A lawsuits against such companies as Subway, McDonald’s, Chipotle, Quiznos and Carl’s Jr.

If you or a family member became ill with a Hepatitis A infection after consuming food and you’re interested in pursuing a legal claim, contact the Marler Clark Hepatitis A attorneys for a free case evaluation.

With Norovirus, Salmonella and E. coli O26, it has been a tough few months for Chipotle

Lawsuits in California, Minnesota, Oregon and Washington

Norovirus: The Ventura County Public Health has reported 98 customers and 17 employees of the subject Chipotle restaurant were sickened on August 18 and 19, 2015. After customers reported the illnesses to Chipotle, the restaurant notified health department officials and closed on Friday afternoon, August 18, to clean and bring in new food. An inspection of the Chipotle location that the health department posted online set forth in detail the following referenced violations:

  • The premises and/or floors, walls, or ceiling are in an unsanitary condition.
  • Equipment or utensils are not clean, fully operative and in good repair.
  • Flying insects were observed within the food facility.
  • Food handlers employed at this facility do not possess a valid food handler card and/or records documenting that food employees possess a valid food handler card are not maintained by the food facility for review as required.
  • Equipment is connected directly to the sewer.
  • Wall and/or ceiling surfaces are deteriorated and/or damaged.
  • The restroom is unclean and in disrepair.

Alyssa McDonald – Complaint

Salmonella: The Minnesota Department of Health (MDH) and the Minnesota Department of Agriculture (MDA) have identified tomatoes as the source of the Salmonella Newport outbreak that has sickened dozens of people who ate at Chipotle restaurants in Minnesota since late August. Investigators are working with state and federal partners to trace the tomatoes back to the farm of origin.

Since the outbreak was reported in early September, additional illnesses have been confirmed by MDH.  A total of 64 cases and 22 locations now have been linked to the outbreak. Nine people have been hospitalized. The cases range in age from 10 to 69 years and are from 13 metro counties and several greater Minnesota counties.

BECK April – MN FEDERAL COURT

BENTO Christine – MN FEDERAL COURT

MOHAWK Shawn – MN FEDERAL COURT

SMITH Kent – MN FEDERAL COURT

E. coli O26: The Washington State Department of Health and the Oregon Health Authority are investigating an outbreak of Shiga toxin-producing Escherichia coli O26 (STEC O26) infections. CDC and the U.S. Food and Drug Administration are assisting with the investigation.  As of November 5, 2015:

  • 40 ill people have been reported from Washington (28) and Oregon (12).
  • 12 people have been hospitalized: 10 in Washington and 2 in Oregon.
  • There have been no reports of hemolytic uremic syndrome (HUS) and no deaths.

Laboratory testing is ongoing to determine the DNA fingerprint of the STEC O26 bacteria making people sick. These DNA fingerprints are uploaded to the CDC PulseNet database as they become available. 10 isolates from ill people in Washington (7) and Oregon (3) have been uploaded to the CDC PulseNet database. All 10 people were infected with STEC O26 that has the same DNA fingerprint. CDC conducted a preliminary search of the PulseNet database and did not find other illnesses that appear to be related to the outbreak in Washington and Oregon. Laboratory testing is continuing.

Washington and Oregon report that most of the ill people ate at several locations of Chipotle Mexican Grill in those states before getting sick.

Collins Complaint Filed Copy 11.06.15

Ellis, Jessica – Complaint

San Jose Shigella Outbreak Is Over

San Jose restaurant, Marisco’s San Juan 3, that was linked to a massive outbreak of Shigella that sickened nearly 200 people has been given the all-clear to reopen, officials announced Thursday.

The Department of Environmental Health inspected Thursday Marisco’s San Juan 3, a Fourth Street restaurant that was shuttered Oct. 18 after county public health officials began linking an influx of Shigella cases to restaurant patrons.

According to county officials, the restaurant’s owners threw away all food products on site, cleaned and sanitized the restaurant and retrained all employees on how to properly handle food. All but one employee tested negative for Shigella. Those who tested negative are cleared to return to work.

Health officials determined an outbreak of Shigella, a contagious diarrheal illness, was connected to the restaurant at 205 N. Fourth St. that caused 194 people to get sick. Health officials said the exact source of the outbreak may never be identified.

Of the 94 people who have confirmed cases of Shigella, 74 are in Santa Clara County. The remaining cases were found in Alameda, San Mateo, Santa Cruz, Marin and Merced counties, public health officials stated.

Three San Jose men who ate at the restaurant and came down with Shigella have filed lawsuits in Santa Clara County Superior Court, according to their attorneys at the firms Rains Lucia Stern, PC, in San Francisco, and Marler Clark in Seattle, Washington.

Chipotle E. coli O26 Numbers Rise to 37 in Washington and Oregon

The investigation into an outbreak of E. coli O26 illnesses that may be related to Chipotle restaurants in Washington and Oregon has grown from 19 reported Washington cases to 25 as of today. The Washington State Department of Health continues working closely with local, state, and federal partners on a disease investigation to learn the extent of the outbreak and possible sources of E. coli O26 bacteria.

In Washington, residents of Clark (11), Cowlitz (2), Island (2), King (6), and Skagit (4) counties have been reported as outbreak cases. Of the 25 cases, 23 reported having been at Chipotle restaurants before getting sick. Nine of the Washington residents were hospitalized. Cases range in age from five-to-60.  The Washington Department of Health said there are five Washington restaurants associated with this outbreak: Hazel Dell, 7715 NE 5thAvenue, Suite 109, in Vancouver; 1404 Broadway Avenue and 4229 University Way NE in Seattle; 512 Ramsey Way 101 in Kent; and 1753 S. Burlington Blvd. in Burlington.

The Oregon Health Authority is reporting a total of 12 cases of Shiga toxin E. coli O26 linked to eating at Chipotle restaurants in the Portland Metro area, up from three cases that were first reported October 31.

Among the cases, three were hospitalized. There have been no deaths. People in Multnomah, Clackamas and Washington counties, as well as Columbia, Benton and Deschutes counties have reported symptoms.

Many people affected with Shiga toxin E. coli O26 may not seek health care, so the number of people made ill by this outbreak is likely more than identified.